Question Bank

1. The static indeterminacy of the structure shown below

(a) 3
(b) 6
(c) 9
(d) 12
2. Determine the degree of freedom of the following frame

(a) 13
(b) 24
(c) 27
(d) 18
3. The force in the member 'CD' of the truss in fig is

(a) Zero
(b) 2P (Compression)
(c) P (Compression)
(d) P (Tensile)
4. The plane frame shown below is :

(a) 1
(b) 2
(c) 3
(d) zero

(a) unstable
(b) stable, determinate
(c) stable, indeterminate to $5^{\text {th }}$ degree
(d) stable, indeterminate to $3^{\text {rd }}$ degree
5. The plane figure shown below is

(a) Stable and statically determinate
(b) unstable and statically determinate
(c) stable and statically indeterminate
(d) unstable and statically indeterminate
6. The degrees of freedom of the following frames is.

(a) 3
(b) 4
(c) 5
(d) 6
7. The kinematic indeterminacy of single bay portal frame fixed at the base is.
(a) One
(b) Two
(c) Three
(d) Zero
8. The kinematic indeterminacy of plane frame shown below is.

ENGINEERS ACADEMY

CE : Theory of Structures

16. The total degree of indeterminacy (both internal and external) for the bridge truss shown in the given figure is

(a) 4
(b) 5
(c) 6
(d) 3
17. What is the degree of indeterminacy (both internal and external) of the cantilever plane truss shown in the figure below?

(a) 2
(b) 3
(c) 4
(d) 5
18. Consider the following statements with respect to the figure below of a typical articulated frame:

19. The frame is internally determinate and externally indeterminate.
20. The frame is internally indeterminate and externally determinate.
21. The frame is internally as well as externally determinate.
22. The frame is internally as well as externally indeterminate.

Which of these statements is/are correct?
(a) 1 only
(b) 1 and 2
(c) 3 only
(d) 3 and 4
19. The degree of static indeterminacy of the pinjointed plane frame shown in figure is

(a) 1
(b) 2
(c) 3
(d) 5
20. The frame shown below is redundant to

(a) single degree
(b) two degree
(c) three degree
(d) four degree
21. Match List-I (Type of structure) with List-II (Statical indeterminacy) and select the correct answer using the codes given below the lists
Number of member $=m$
Number of joints $=\mathrm{n}$
Number of external reaction elements $=r$

List-I

(A) Plane frame
(B) Space truss
(C) Space frame

List-II

1. $m+r-3 n$
2. $6 m+r-6 n$
3. $6 \mathrm{~m}+\mathrm{r}-3 \mathrm{n}$
4. $3 \mathrm{~m}+\mathrm{r}-3 \mathrm{n}$

Codes :

	\mathbf{A}	\mathbf{B}	\mathbf{C}
(a)	1	2	3
(b)	4	3	2
(c)	2	1	3
(d)	4	1	2

22. Total degree of indeterminacy (both internal and external) of the plane frame shown in the given figure is

(a) 10
(b) 11
(c) 12
(d) 15
23. The degree of indeterminacy of the beam given below is

(a) zero
(b) one
(c) two
(d) three
24. Which one of the following is true example of a statically determinate beam?
(a) One end is fixed and the other end is simply supported
(b) Both the ends are fixed
(c) The beam overhangs over two supports
(d) The beam is supported on three supports
25. Which one of the following structures is statically determinate and stable?
(a)

(b)

(c)

(d)

26. What is the degree of indeterminacy of the frame shown in the figure given below?

(a) 4
(b) 3
(c) 2
(d) zero
27. A determinate structure
(a) cannot be analyzed without the correct knowledge of modulus of elasticity
(b) must necessarily have roller support at one of its ends
(c) requires only statical equilibrium equations for its analysis
(d) will have zero deflection at its ends
28. A statically indeterminate structure is the one which
(a) cannot be analyzed at all
(b) can be analyzed using equations of statics only
(c) can be analyzed using equations of statics and compatibility equations
(d) can be analyzed using equations of compatibility only
29. What is the statical indeterminacy for the frame shown below?

(a) 12
(b) 15
(c) 11
(d) 14
30. What is the number of independent degrees of freedom of the two-span continuous beam of uniform section shown in the figure below?

(a) 1
(b) 2
(c) 3
(d) 4
31. What is the kinematic indeterminacy for the shown below? (members are inextensible)

(a) 6
(b) 11
(c) 12
(d) 21
32. If the axial deformation is neglected, what is the kinematic indeterminacy of a single bay portal frame fixed at base?
(a) 2
(b) 3
(c) 4
(d) 6
33. For the plane frame with an overhang as shown below, assuming negligible axial deformation the degree of static indeterminacy ' d ' and the degree of kinematic indeterminacy ' k ' are

(a) $\mathrm{d}=3$ and $\mathrm{k}=10$
(b) $\mathrm{d}=3$ and $\mathrm{k}=13$
(c) $\mathrm{d}=9$ and $\mathrm{k}=10$
(d) $\mathrm{d}=9$ and $\mathrm{k}=13$
34. Considering beam as axially rigid, the degree of freedom of a plane frame shown below is

(a) 9
(b) 8
(c) 7
(d) 6
35. The frame shown in the given figure has

(a) one unknown reaction component
(b) two unknown reaction components
(c) three unknown reaction components
(d) six unknown reaction components
36. A perfect plane frame having n number of members and j number of joints should satisfy the relation
(a) $\mathrm{n}<(2 \mathrm{j}-3)$
(b) $\mathrm{n}=(2 \mathrm{j}-3)$
(c) $\mathrm{n}>(2 \mathrm{j}-3)$
(d) $\mathrm{n}=(3-2 \mathrm{j})$
37. The total (both internal and external) degree of static indeterminacy of the plane frame shown in the given figure is

(a) 18
(b) 16
(c) 14
(d) 13
38. Statical indeterminacy for 2 D truss is
(a) $m+r-2 j$
(b) $\mathrm{m}+\mathrm{r}-3 \mathrm{j}$
(c) $m+j-2 r$
(d) $m-j+2 j$
39. Statical indeterminacy for 3 D truss is
(a) $\mathrm{m}+\mathrm{r}-3 \mathrm{j}$
(b) $m+r-2 j$
(c) $\mathrm{m}+3 \mathrm{j}-\mathrm{r}$
(d) $m+j-3 r$
40. Statical indeterminacy for 2 D beams $\&$ frames is
(a) $2(\mathrm{~m}-\mathrm{j})+\mathrm{r}-\mathrm{f}$
(b) $3(\mathrm{~m}-\mathrm{j})+\mathrm{r}-\mathrm{f}$
(c) $3(\mathrm{~m}-\mathrm{j})+\mathrm{f}-\mathrm{r}$
(d) $3(\mathrm{~m}-\mathrm{r})+\mathrm{j}-\mathrm{f}$
41. Statical indeterminacy for 3 D beams $\&$ truss is
(a) $3(\mathrm{~m}-\mathrm{j})+\mathrm{r}-\mathrm{f}$
(b) $m+r-3 j$
(c) $6(\mathrm{~m}-\mathrm{j})+\mathrm{r}-\mathrm{f}$
(d) $6(\mathrm{~m}-\mathrm{r})+\mathrm{j}-\mathrm{f}$
42. Determine statical and kinematic indeterminacies for trusses

(a) 3, 14
(b) 2, 14
(c) 2,15
(d) 2, 16
43. Determine statical and kinematic indeterminacies for trusses

(a) 1, 9
(b) 2,8
(c) 1,10
(d) 1,8
44. Determine statical and kinematic indeterminacies for trusses

(a) 1,5
(b) 1, 4
(c) 1,6
(d) 2,4

CE : Theory of Structures

ANSWERS AND EXPLANATIONS

1. Ans. (c)

Reactions at $\mathrm{A}=3$,
Reactions at $\mathrm{B}=2$
Reaction at $\mathrm{C}=1$
Total no. of reactions $=6$
No. of equilibrium equations $=3$

$$
\begin{aligned}
D_{s e} & =r-\text { equilibrium equations } \\
& =6-3=3
\end{aligned}
$$

$D_{s}=3 C$ for rigid jointed plane frames
Where

$$
\begin{array}{ll}
& \\
& \mathrm{C}=\text { no. of closed boxes } \\
\therefore & \mathrm{D}_{\mathrm{si}}=3 \times 2=6 \\
\therefore & \mathrm{D}_{\mathrm{s}}=\mathrm{D}_{\mathrm{se}}+\mathrm{D}_{\mathrm{si}}=3+6=9
\end{array}
$$

2. Ans. (a)

Degrees of freedom of various supports (or) joints are shown in figure

$$
\begin{aligned}
\mathrm{D}_{\mathrm{k}} & =0+3 \times 7+(1+2) \\
& =24 \text { (with axial deformation) } \\
& =24-11=13
\end{aligned}
$$

(neglecting axial deformation)

3. Ans. (d)

Email : info@engineersacademy.org Website : www.engineersacademy.org
13. Ans. (b)

$$
\begin{aligned}
& D_{S e}=6-3=3 \\
& D_{S i}=3 C=3 \times 1=3
\end{aligned}
$$

Force Releases @ C=3-1=2
Force Releases @ D=2-1=1

$$
\begin{aligned}
\therefore \quad \mathrm{D}_{\mathrm{S}} & =\mathrm{D}_{\mathrm{Se}}+\mathrm{D}_{\mathrm{Si}}-\text { release } \\
& =3+3-(2+1) \\
& =3
\end{aligned}
$$

9. Ans. (a)

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{Se}}=4-3=1 \\
& \mathrm{D}_{\mathrm{Si}}=0
\end{aligned}
$$

Force Release at $\mathrm{C}=1$

$$
\begin{aligned}
\therefore \quad \mathrm{D}_{\mathrm{S}} & =1+0-1 \\
& =0
\end{aligned}
$$

10. Ans. (c)

Degree of freedom $\left(D_{k}\right)$
$=$ No. of unknown joint displacements
At pinned support DOF $=1$ (rotation)
At rigid joint of plane frame $=3$

$$
\therefore \quad \mathrm{D}_{\mathrm{k}}=1+3+3+1=8
$$

(Considering axial deformations)

$$
\mathrm{D}_{\mathrm{k}}=8-\text { no. of members }
$$

(neglecting axial deformations)

$$
=8-3=5
$$

11. Ans. (c)

At fixed support DOF $=0$

$$
D_{k}=0+3+3+0=6
$$

(Considering axial deformation)

$$
=6-3=3
$$

(neglecting axial deformation)
12. Ans. (c)

Similar to question no. 02
14. Ans. (b)

$$
\begin{aligned}
\mathrm{D}_{\mathrm{k}} & =0+3+3+0 \\
& =6 \text { (with axial deformation) } \\
& =6-3=3
\end{aligned}
$$

(neglecting axial deformation)
15. Ans. (d)

$$
\begin{aligned}
D_{S} & =R_{e}+m-2 j \\
& =6+12-2 \times 9 \\
& =0
\end{aligned}
$$

The supports A, B, I will give stability to the given truss. For the central portion 'HCD'

No. of members $\mathrm{m}=12$
No. of joints $=9$

$$
\begin{aligned}
D_{k} & =2 j-R_{e} \\
& =2 \times 9-6=12
\end{aligned}
$$

Hence the given truss is statically determinate. As different joints have Degrees of freedom it is kinematically indeterminate.
16. Ans. (a)
17. Ans. (a)
18. Ans. (c)
19. Ans. (d)
20. Ans. (a)
21. Ans. (d)

Statical indeterminancy $D_{s}=$ No. of unknown force - No. of equations

For plane frame, $D_{s}=(3 m+r)-3 n$
For space trus, $D_{s}=(m+r)-3 n$
For space frame $D_{s}=(6 m+r)-6 n$
22. Ans. (c)

The degree of indeterminacy

$$
D_{S}=R_{e}+\left(3 m-r_{r}\right)-3\left(j+j^{\prime}\right)
$$

Number of external reactions

$$
\mathrm{R}_{\mathrm{e}}=3+3+3+3=12
$$

Number of rigid joints,

$$
\mathrm{j}=10
$$

Number of joints at which releases are located,

$$
\mathrm{j}^{\prime}=1
$$

Number of members,

$$
\mathrm{m}=12
$$

As the hinge is located at a point where 4 members meet. Hence it is equivalent to three hinges. Therefore number of releases, $r_{r}=3$.

$$
\begin{aligned}
\therefore \quad \mathrm{D}_{\mathrm{S}} & =12+(3 \times 12-3)-3(10+1) \\
& =12+33-33=12
\end{aligned}
$$

23. Ans. (c)
24. Ans. (c)
25. Ans. (a)
26. Ans. (c)
27. Ans. (c)
28. Ans. (c)
29. Ans. (c)
30. Ans. (c)
31. Ans. (b)
32. Ans. (b)
33. Ans. (d)
34. Ans. (d)
35. Ans. (d)
36. Ans. (b)
37. Ans. (b)

$$
\begin{aligned}
D_{S} & =R_{e}+\left(3 m-r_{r}\right)-3\left(j+j^{\prime}\right) \\
R_{e} & =3+2+2=7 \\
m & =15 \\
r_{r} & =0 \\
j & =12 \\
j^{\prime} & =0 \\
D_{S} & =7+3 \times 15-3 \times 12 \\
& =16
\end{aligned}
$$

38. Ans. (a)
39. Ans. (a)
40. Ans. (b)
41. Ans. (c)
42. Ans. (c)
43. Ans. (b)
44. Ans. (c)
45. Ans. (d)
46. Ans. (c)
47. Ans. (a)
48. Ans. (a)

Email : info@engineersacademy.org Website : www.engineersacademy.org

